Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent data search platforms use ML task-based utility measures rather than metadata-based keywords, to search large dataset corpora. Requesters submit a training dataset, and these platforms search foraugmentations---join or union-compatible datasets---that, when used to augment the requester's dataset, most improve model (e.g., linear regression) performance. Although effective, providers that manage personally identifiable data demand differential privacy (DP) guarantees before granting these platforms data access. Unfortunately, making data search differentially private is nontrivial, as a single search can involve training and evaluating datasets hundreds or thousands of times, quickly depleting privacy budgets. We presentSaibot, a differentially private data search platform that employs Factorized Privacy Mechanism (FPM), a novel DP mechanism, to calculate sufficient semi-ring statistics for ML over different combinations of datasets. These statistics are privatized once, and can be freely reused for the search. This allows Saibot to scale to arbitrary numbers of datasets and requests, while minimizing the amount that DP noise affects search results. We optimize the sensitivity of FPM for common augmentation operations, and analyze its properties with respect to linear regression. Specifically, we develop an unbiased estimator for many-to-many joins, prove its bounds, and develop an optimization to redistribute DP noise to minimize the impact on the model. Our evaluation on a real-world dataset corpus of 329 datasets demonstrates thatSaibotcan return augmentations that achieve model accuracy within 50--90% of non-private search, while the leading alternative DP mechanisms (TPM, APM, shuffling) are several orders of magnitude worse.more » « less
-
Pooling and sharing data increases and distributes its value. But since data cannot be revoked once shared, scenarios that require controlled release of data for regulatory, privacy, and legal reasons default to not sharing. Because selectively controlling what data to release is difficult, the few data-sharing consortia that exist are often built around data-sharing agreements resulting from long and tedious one-off negotiations. We introduce Data Station, a data escrow designed to enable the formation of data-sharing consortia. Data owners share data with the escrow knowing it will not be released without their consent. Data users delegate their computation to the escrow. The data escrow relies on delegated computation to execute queries without releasing the data first. Data Station leverages hardware enclaves to generate trust among participants, and exploits the centralization of data and computation to generate an audit log. We evaluate Data Station on machine learning and data-sharing applications while running on an untrusted intermediary. In addition to important qualitative advantages, we show that Data Station: i) outperforms federated learning baselines in accuracy and runtime for the machine learning application; ii) is orders of magnitude faster than alternative secure data-sharing frameworks; and iii) introduces small overhead on the critical path.more » « less
-
null (Ed.)Automatic machine learning (AML) is a family of techniques to automate the process of training predictive models, aiming to both improve performance and make machine learning more accessible. While many recent works have focused on aspects of the machine learning pipeline like model selection, hyperparameter tuning, and feature selection, relatively few works have focused on automatic data augmentation. Automatic data augmentation involves finding new features relevant to the user's predictive task with minimal "human-in-the-loop" involvement. We present ARDA, an end-to-end system that takes as input a dataset and a data repository, and outputs an augmented data set such that training a predictive model on this augmented dataset results in improved performance. Our system has two distinct components: (1) a framework to search and join data with the input data, based on various attributes of the input, and (2) an efficient feature selection algorithm that prunes out noisy or irrelevant features from the resulting join. We perform an extensive empirical evaluation of different system components and benchmark our feature selection algorithm on real-world datasets.more » « less
An official website of the United States government
